Answer:
a) 0.75
b) 0.5
c) Mean = 60 minutes
Standard Deviation = 5.77 minutes
Step-by-step explanation:
We are given the following information in the question:
The cycle time for trucks hauling concrete to a highway construction site is uniformly distributed over the interval 50 to 70 minutes.
a = 50, b = 70
[tex]f(x) = \displaystyle\frac{1}{b-a} = \frac{1}{70-50} = \frac{1}{20}[/tex]
We are given a uniform distribution.
a) P(cycle time will be less than 65 minutes)
P( x < 65)
[tex]=\displaystyle\int_{65}^{50} f(x) dx\\\\=\displaystyle\int_{65}^{50} \frac{1}{20}dx\\\\=\frac{1}{20}[x]_{65}^{50} = \frac{1}{20}(65-50) = 0.75[/tex]
b) P(cycle time is less than 65 minutes if it is known that the cycle time exceeds 55 minutes)
P( 55 < x < 65)
[tex]=\displaystyle\int_{65}^{55} f(x) dx\\\\=\displaystyle\int_{65}^{55} \frac{1}{20}dx\\\\=\frac{1}{20}[x]_{65}^{55} = \frac{1}{20}(65-55) = 0.5[/tex]
c) Mean:
[tex]\mu = \displaystyle\frac{a+b}{2}\\\\\mu = \frac{50+70}{2} = 60[/tex]
Standard Deviation:
[tex]\sigma = \sqrt{\displaystyle\frac{(b-a)^2}{12}}\\\\= \sqrt{\displaystyle\frac{(70-50)^2}{12}} = \sqrt{33.33} = 5.77[/tex]