Determine the value of c such that the function f(x,y) = cxy for 0 < x < 3 and 0 < y < 3 satisfies the properties of a joint probability density function. Determine the following. Round your answers to four decimal places (e.g. 98.7654).

Respuesta :

Answer:

Thus the value of c such that the function f(x,y) = cxy for 0 < x < 3 and 0 < y < 3 satisfies the properties of a joint probability density function is:

c=0.0494

Step-by-step explanation:

Lets start by understanding what we are looking for, thus what is a Joint Probability Density Function.

In principle, and considering a given Probability Space, if two variables exist, say [tex]X[/tex] and [tex]Y[/tex], then the Joint Probability defined as [tex]f_{XY}(x,y)[/tex], essentially denotes the probability that each [tex]X[/tex] and [tex]Y[/tex] exist in a discrete value set,  particularly specified for these variables.

If the given variables, (here [tex]X[/tex] and [tex]Y[/tex]) are continuous, then three properties must be met by [tex]f_{XY}(x,y)[/tex]. However in this question we are only interested in the first two properties, defined as:

  • [tex]f_{XY}(x,y)\geq 0[/tex] for all [tex]x,y[/tex]
  • [tex]\int\limits^\infty_{-\infty} \int\limits^\infty_{-\infty}{} \,f_{XY}(x,y) dydx=1[/tex]

Now lets look at our case here. We know the following:

  • [tex]f_{XY}(x,y)=cxy[/tex]
  • [tex]0<x<3[/tex]
  • [tex]0<y<3[/tex]

Thus we can say that:

[tex]f_{XY}(x,y)=0[/tex],    otherwise

[tex]f_{XY}(x,y)=cxy[/tex],    [tex]0<x<3[/tex], [tex]0<y<3[/tex]

With respect to that, then we can write our integral for solution as follow:

[tex]\int\limits^3_b {}\int\limits^3_b {cxy} \, dydx =1[/tex]       Eqn(1).

Having obtained Eqn(1) we can start solving for our constant [tex]c[/tex] as follow:

[tex]c\int\limits^3_b {}\int\limits^3_b {xy} \, dydx =1[/tex]            Take constant outside of the Integrals

[tex]c\int\limits^3_b{x\frac{y^2}{2} }|^3_0 \, dx =1[/tex]             Compute first integral for [tex]dy[/tex]

[tex]c\int\limits^3_b{x[\frac{3^2}{2}-\frac{0^2}{2}] } \, dx =1[/tex]       Apply Boundary Conditions

[tex]c\int\limits^3_b{\frac{9}{2}x } \, dx =1[/tex]                Compute and Simplify

[tex]\frac{9}{2}c[ \frac{x^2}{2}]|^3_0=1[/tex]                         Compute second integral for  [tex]dx[/tex]

[tex]\frac{9}{2}c[ \frac{3^2}{2}- \frac{0^2}{2}]=1[/tex]             Apply Boundary Conditions

[tex]\frac{81}{4}c=1[/tex]                          Simplify and solve for c

[tex]81c=4\\ c=\frac{4}{81}\\ c=0.04938\\[/tex]

[tex]c=0.0494[/tex]                        Answer rounded to 4 d.p.

Thus the value of c such that the function f(x,y) = cxy for 0 < x < 3 and 0 < y < 3 satisfies the properties of a joint probability density function is:

[tex]c=0.0494[/tex]

The value of c such that the function f(x,y) = cxy for 0 < x < 3 and 0 < y < 3 satisfies the properties of a joint probability density function is 0.0494

The probability density function is given as;

f(x,y) = cxy for 0 < x < 3 and 0 < y < 3

For the density function to be a joint probability function, the following must be true

[tex]\int\limits^a_b {\int\limits^a_b {f(x,y)} \, dy } \, dx = 1[/tex]

So, we have:

[tex]\int\limits^3_0 {\int\limits^3_0 {cxy} \, dy } \, dx = 1[/tex]

Factor out the constant

[tex]c\int\limits^3_0 {\int\limits^3_0 {xy} \, dy } \, dx = 1[/tex]

Integrate

[tex]c\int\limits^3_0 x* \frac{y^2}2|\limits^3_0 } \, dx = 1[/tex]

Expand

[tex]c\int\limits^3_0 x* \frac{3^2}2} \, dx = 1[/tex]

[tex]c\int\limits^3_0 x* \frac{9}2} \, dx = 1[/tex]

Factor out the constant

[tex]\frac{9}2c\int\limits^3_0 x \, dx = 1[/tex]

Integrate

[tex]\frac{9}2c * \frac{x^2}{2}|\limits^3_0 = 1[/tex]

Expand

[tex]\frac{9}2c * \frac{3^2}{2} = 1[/tex]

[tex]\frac{9}2c * \frac{9}{2} = 1[/tex]

Evaluate the product

[tex]\frac{81}{4}c = 1[/tex]

Multiply both sides by 4/81

[tex]c = \frac{4}{81}[/tex]

Evaluate the quotient

[tex]c = 0.0494[/tex]

Hence, the value of c is 0.0494

Read more about probability density function at:

https://brainly.com/question/15246027

RELAXING NOICE
Relax