Respuesta :
Answer:
a = 0.5195 m/s²
θ = 9.997º ≈ 10º
Explanation:
We apply Newton's 2nd Law as follows:
∑ Fx = m*ax
∑ Fy = m*ay
Then we have
∑ Fx = F₁x + F₂x = m*ax ⇒ 600*Cos 40º + 600*Cos (-20º) = 2000*ax
⇒ ax = 0.5117 m/s²
∑ Fy = F₁y + F₂y = m*ay ⇒ 600*Sin 40º + 600*Sin (-20º) = 2000*ay
⇒ ay = 0.0902 m/s²
the magnitude of the acceleration of the barge is
a = √(ax² + ay²) = √((0.5117 m/s²)² + (0.0902 m/s²))= 0.5196 m/s²
and the direction is
θ = Arctan (ay / ax) = Arctan (0.0902 / 0.5117) = 9.997º ≈ 10º
The magnitude and direction of the acceleration are respectively; 0.5196 m/s² and 10°
What is the magnitude and direction of the acceleration?
Let us first calculate the x-components of the forces exerted by the horses;
F₁ₓ = F₁ * cosθ₁ = 600 * cos 40° = 459.63 N
F₂ₓ = F₂ * cosθ₂ = 600 * cos -20° = 563.82
The total force in the x-direction is; Fₓ = F₁ₓ + F₂ₓ
Fₓ = 459.63 + 563.82
Fₓ = 1023.45 N
Similarly, calculate the y-components of the forces exerted by the horses;
F₁y = F₁ * sinθ₁ = 600 * sin 40° = 385.67 N
F₂y = F₂ * sinθ₂ = 600 * sin -20° = -205.21 N
The total force in the y-direction is; Fy = F₁y + F₂y
Fy = 385.67 - 205.21
Fy = 180.46 N
x-component of acceleration is;
aₓ = Fₓ/m = 1023.45/2000
aₓ = 0.5117 m/s²
a_y = F_y/m = 180.46/2000
a_y = 0.0903 m/s²
Magnitude of acceleration is;
a = √(aₓ² + a_y²)
a = √(0.5117² + 0.09023²)
a = 0.5196 m/s²
Direction;
θ = tan⁻¹(aₓ/a_y) = tan⁻¹(0.5117/0.0903)
θ = 10°
Read more about Magnitude of acceleration at; https://brainly.com/question/1597065
