Respuesta :
Answer:
Theorem of calculus
Step-by-step explanation:
Take the integral
[tex]\int\limits^3_4 (2x^2+9)dx[/tex]
Integrate the sum term by term and factor out constants
[tex]= 2 \int\limits^4_3 x^2 dx + 9 \int\limits^4_3 1 dx[/tex]
Apply the fundamental theorem of calculus.
The antiderivative of x^2 is x^3/3, while for a constat is x
[tex]= \frac{2x^3}{3} + 9x dx[/tex]
Evaluate the limits
[tex]= (2*\frac{(4)^3}{3}+9*4)-(2*\frac{(3)^3}{3}+9*3)[/tex]
[tex]=\frac{101}{3}[/tex]
Answer:
[tex]\int _3^42x^2+9dx=\frac{101}{3}[/tex]
Step-by-step explanation:
The Fundamental Theorem of Calculus says,
Suppose [tex]f(x)[/tex] is a continuous function on [tex][a,b][/tex] and also suppose that [tex]F(x)[/tex] is any anti-derivative for
[tex]\int_{{\,a}}^{{\,b}}{{f\left( x \right)dx}} = \left. {F\left( x \right)} \right|_a^b = F\left( b \right) - F\left( a \right)[/tex]
Using the above definition, we can evaluate the definite integral [tex]\int\limits^4_3 {2x^2+9} \, dx[/tex]
First,
[tex]\mathrm{Apply\:the\:Sum\:Rule}:\quad \int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx[/tex]
[tex]\int _3^42x^2+9dx=\int _3^42x^2dx+\int _3^49dx[/tex]
Evaluate the integral
[tex]\int _3^42x^2dx=2\cdot \int _3^4x^2dx\\\\\mathrm{Apply\:the\:Power\:Rule}:\quad \int x^adx=\frac{x^{a+1}}{a+1},\:\quad \:a\ne -1\\\\2\left[\frac{x^{2+1}}{2+1}\right]^4_3=2\left[\frac{x^3}{3}\right]^4_3\\\\\mathrm{Compute\:the\:boundaries}:\\\\2(\frac{4^3}{3}-\frac{3^3}{3}) =2\cdot \frac{37}{3}= \frac{74}{3}[/tex]
and the integral
[tex]\int _3^49dx=\left[9x\right]^4_3=9(4)-9(3)=9[/tex]
Finally, we get that
[tex]\int _3^42x^2+9dx=\frac{74}{3}+9=\frac{101}{3}[/tex]
