Answer:
[tex]\vec{F}=qB(v_y \hat{i} - v_x\hat{j})[/tex]
Explanation:
The force excerted by a magnetic field on a charged particle is given by the Lorentz force:
[tex]\vec{F} = q \vec{v} \times \vec{B}[/tex]
Lets consider the z-direction of our coordinate system the same direction of the magnetic field, that is:
[tex]\vec{B} = B \hat{k}[/tex]
Let us consider that the velocity of a given particle is:
[tex]\vec{v} = v_x\hat{i} + v_y \hat{j} + v_z \hat{k}[/tex]
Therefore, since k×k = 0
[tex]\vec{v} \times \vec{B} = (v_x\hat{i} + v_y \hat{j} + v_z \hat{k}) \times B\hat{k}\\\vec{v} \times \vec{B} = (Bv_x \hat{i} \times\hat{k}) + (Bv_y \hat{j}\times\hat{k})[/tex]
And since i, j , k are a rigth hand system:
i × j = k
j × k = i
k × i = j --> i × k= -j
[tex]\vec{v} \times \vec{B} = Bv_x (-\hat{j}) + Bv_y \hat{i} = Bv_y \hat{i} - Bv_x\hat{j}[/tex]
Threfore, if the particle has charge q and velocity v = (vx,vy,vz), the magnetic force it will feel will be
[tex]\vec{F}=qB(v_y \hat{i} - v_x\hat{j})[/tex]