Answer:
0.044 m/s
Explanation:
We are given that
Diameter of plastic sphere=11 mm=[tex]11\times 10^{-3}=0.011 m[/tex]
Density of sphere=[tex]1150 kg/m^3[/tex]
T=[tex]20^{\circ} C[/tex]
Density of water=[tex]998 kg/m^3[/tex]
Viscosity of water=[tex]1.002\times 10^{-3} kg/ms[/tex]
Drag coefficient of a sphere in a laminar flow [tex]C_D=0.5[/tex]
We have to find the terminal velocity of the sphere in water.
Terminal velocity of sphere in water is given by
[tex]V=\sqrt{\frac{4gD(\frac{\rho_s}{\rho_w}-1)}{3C_D}[/tex]
Substitute the values then we get
[tex]V=\sqrt{\frac{4\cdot 9.81\times 0.011(\frac{1150}{998}-1)}{3\times 0.5}[/tex]
[tex]V=0.044 m/s[/tex]
Hence, the terminal velocity of sphere in water=0.044 m/s