Answer:
B. [tex]2x^{2}-3x+10=2x^{2}+21[/tex]
Step-by-step explanation:
A quadratic equation is of the form [tex]ax^{2} +bx +c=0[/tex], where, a,b and c are any real numbers and [tex]a\ne 0[/tex].
The quadratic formula is given as:
[tex]x=\frac{-b\pm \sqrt{b^{2}-4ac}}{2a}[/tex]
Here, the value of [tex]a[/tex] can't be 0.
Now, the necessary condition to check if quadratic formula can be used in the given equations is to check the value of [tex]a[/tex] after rearranging them in the standard form.
Let us check each expression for the value of [tex]a[/tex].
Option A:
[tex]x^{2}-6x-7=2x\\x^{2}-6x-2x-7=0\\x^{2}-8x-7=0[/tex]
Here, [tex]a=1[/tex]. So, we can use quadratic formula.
Option B:
[tex]2x^{2}-3x+10=2x^{2}+21\\ 2x^{2}-2^{2}-3x+10-21=0\\0x^{2}-3x-11=0[/tex]
Here, [tex]a=0[/tex]. So, we can't use quadratic formula.
Option C:
[tex]5x^{2}-3x+10=2x^{2}\\5x^{2}-2x^{2}-3x+10=0\\3x^{2}-3x+10=0[/tex]
Here, [tex]a=3[/tex]. So, we can use quadratic formula.
Option D:
[tex]2x-4=2x^{2}\\-2x^{2}+2x-4=0[/tex]
Here, [tex]a=-2[/tex]. So, we can use quadratic formula.
So, only option B has [tex]a=0[/tex]. So, we can't use quadratic formula for option B.