Answer:
[tex]m\approx34.99[/tex]
Explanation:
Radioactive decay behaves according to the law of exponential decay:
[tex]m(t)=m_0*e^{-rt}[/tex]
Where:
[tex]r=Decay\hspace{3}rate[/tex]
[tex]t=Time(In\hspace{3}days)[/tex]
[tex]m_0=Initial\hspace{3}amount\hspace{3}of\hspace{3}substance[/tex]
[tex]m(t)=Amount\hspace{3}of\hspace{3}substance\hspace{3}at\hspace{3}time\hspace{3}t[/tex]
So we need to find the decay rate r. Let's find it using the equation and the data provide, but first, we need to convert the hours in days:
[tex]50h*\frac{1day}{24h}=\frac{25}{12}day\\ 33h*\frac{1day}{24h} =\frac{11}{8}day[/tex]
Now for [tex]t=\frac{11}{8},m=50[/tex] then:
[tex]m(\frac{11}{8} )=100*e^{-r(\frac{11}{8}) } =50[/tex]
Divide both sides by 100:
[tex]e^{-r(\frac{11}{8}) } =\frac{1}{2}[/tex]
Take the natural logarithm of both sides:
[tex]-\frac{11}{8}x=ln(\frac{1}{2} )[/tex]
Multiply both sides by -8/11:
[tex]x=\frac{-8ln(\frac{1}{2} )}{11} \approx0.504107[/tex]
Now we have found the rate decay r, let's find how many milligrams will remain after 59 hours (25/12 day):
[tex]m(\frac{25}{12} )=100*e^{-0.504107*\frac{25}{12}) } =100*e^{-1.050222917}=34.98597508\approx35.99[/tex]