Answer:
Given that
P = RT/V + a/V²
We know that
H= U + PV
For T= Constant (ΔU=0)
ΔH= ΔU +Δ( PV)
ΔH= Δ( PV)
P = RT/V + a/V²
P V= RT + a/V
dH/dV = d(RT + a/V)/dV
dH/dV = - a/V²
So the expression of dH/dV
[tex]\dfrac{dH}{dV}=\dfrac{-a}{V^2}[/tex]
b)
In isothermal process
[tex]\Delta H=nRT\ln{\dfrac{V_2}{V_1}}[/tex] (ΔU=0)
Now by putting the all values
[tex]\Delta H=nRT\ln{\dfrac{V_2}{V_1}}[/tex]
[tex]\Delta H=1\times 0.08206\times 300\ln{\dfrac{40}{20}}[/tex]
ΔH = 17.06 L.atm