One mole of a gas is placed in a closed system with a 20 L vessel initially at T = 300 K. The vessel is then isothermally expanded to 40 L. The gas follows the equation of state: P = RT/V + a/V2 where a = 240 L2 · atm/mol2 and R = 0.08206 L · atm/ mol · K. A. Derive an expression relating (dH/dV)T to measurable properties. B. Find DH for the gas in this process.

Respuesta :

Answer:

Given that

P = RT/V + a/V²

We know that

H= U + PV

For T= Constant  (ΔU=0)

ΔH= ΔU +Δ( PV)

ΔH= Δ( PV)

P = RT/V + a/V²

P V= RT + a/V

dH/dV = d(RT + a/V)/dV

dH/dV = - a/V²

So the expression of dH/dV

[tex]\dfrac{dH}{dV}=\dfrac{-a}{V^2}[/tex]

b)

In isothermal process

[tex]\Delta H=nRT\ln{\dfrac{V_2}{V_1}}[/tex]      (ΔU=0)

Now by putting the all values

[tex]\Delta H=nRT\ln{\dfrac{V_2}{V_1}}[/tex]

[tex]\Delta H=1\times 0.08206\times 300\ln{\dfrac{40}{20}}[/tex]

ΔH = 17.06 L.atm

ACCESS MORE
EDU ACCESS
Universidad de Mexico