Answer
given,
angular speed of the tub = 5 rev/s
time = 9 s
he tub slows to rest = 15.0 s
the angular acceleration
[tex]\omega_f - \omega_i = \alpha t[/tex]
[tex]\alpha = \dfrac{5-0}{9}[/tex]
[tex]\alpha = 0.556 rev/s^2[/tex]
angular displacement
[tex]\theta_1 = \omega_i \ t + \dfrac{1}{2}\alpha t^2[/tex]
[tex]\theta_1 = \dfrac{1}{2}\times 0.556 \times 9^2[/tex]
[tex]\theta_1 = 22.52 rev[/tex]
[tex]\theta_1 = 23 rev[/tex]
case 2
now,
[tex]\omega_i = 5 rev/s[/tex]
[tex]\omega_f = 0 rev/s[/tex]
time = 15 s
the angular acceleration
[tex]\omega_f - \omega_i = \alpha t[/tex]
[tex]\alpha = \dfrac{0-5}{15}[/tex]
[tex]v\alpha =-0.333 rev/s^2[/tex]
angular displacement
[tex]\theta_2 = \omega_i \ t + \dfrac{1}{2}\alpha t^2[/tex]
[tex]\theta_2 =5\times 15 -\dfrac{1}{2}\times 0.333 \times 15^2[/tex]
[tex]\theta_2 = 37.875 rev [/tex]
[tex]\theta_2 =38 rev[/tex]
total revolution in 24 s
= 23 + 38
= 62 revolution