Answer : The molar mass of unknown gas is 92.0 g/mol
Solution :
According to the Graham's law, the rate of effusion of gas is inversely proportional to the square root of the molar mass of gas.
[tex]R\propto \sqrt{\frac{1}{M}}[/tex]
or,
[tex](\frac{R_1}{R_2})=\sqrt{\frac{M_2}{M_1}}[/tex] ..........(1)
where,
[tex]R_1[/tex] = rate of effusion of methane gas = [tex]1.30\times 10^{-8}mol/s[/tex]
[tex]R_2[/tex] = rate of effusion of unknown gas = [tex]5.42\times 10^{-9}mol/s[/tex]
[tex]M_1[/tex] = molar mass of methane gas = 16 g/mole
[tex]M_2[/tex] = molar mass of unknown gas = ?
Now put all the given values in the above formula 1, we get:
[tex](\frac{1.30\times 10^{-8}mol/s}{5.42\times 10^{-9}mol/s})=\sqrt{\frac{M_2}{16g/mole}}[/tex]
[tex]M_2=92.0g/mol[/tex]
Therefore, the molar mass of unknown gas is 92.0 g/mol