Respuesta :

znk

Answer:

[tex]\large \boxed{x = -1,\, y = -4 \text{ or } (-1, -4)}[/tex]

Step-by-step explanation:

ƒ(x):

-x + y = -3

For easier calculations, add x to each side. Then

y = -3 + x

x =  1:  y = -3 + 1                = -2

x = 0:  y = -3 + 0               = -3

x = -1: y =  -3 + (-1) = -3 - 1 = -4

g(x):

-6x + y = 2

y = 2 + 6x

x =  1: y = 2 + 6(1)              =  8

x = 0: y = 2 + 0(1)              =  2

x = -1: y = 2 + 6(-1) = 2 - 6 = -4

[tex]\begin{array}{ccc}\mathbf{x}& \mathbf{f(x)}& \mathbf{g(x)}\\\mathbf{1} & -2 & 8\\\mathbf{0} & -3 & 2\\\mathbf{-1} & -4 & -4\\\end{array}\\\text{The table shows that f(x) = g(x) = -4 when x = -1.}\\\text{The solution to both equations is $\large \boxed{\mathbf{x = -1,\, y = -4} \text{ or } \mathbf{(-1, -4)}}$}[/tex]

Answer:

{x = -1,\, y = -4 \text{ or } (-1, -4)}

Step-by-step explanation:

RELAXING NOICE
Relax