Answer:
The potential energy is
ΔPE=15.39 N
Explanation:
In the initial sequence of the charge the energy initial is
[tex]PE=k*\frac{abs(q1*q2)}{r^{2}} \\PE=8.85x10^{9} *\frac{abs(-3.8uC*1.7uC)}{(8.5cm)^{2}} \\PE=8.85x10^{9}\frac{N*m^{2} }{C^{2} }*\frac{3.8uC*1.7uC}{(0.085m)^{2}} \\\\PE=8.85x10^{9}\frac{N*m^{2} }{C^{2} } *\frac{6.46uC^{2} }{7.225x10^{-3} m^{2}} \\\\PE=7.9N[/tex]
The change the charge and the distance the second energy is
r=[tex]\sqrt{2^{2} +8.5^{2} }=8.732cm\\ 8.732cm\frac{1m}{100cm} =87.32x10^{-3}m[/tex]
[tex]PE=k*\frac{abs(q1*q3*q4)}{r^{2}} \\PE=8.85x10^{9} *\frac{abs(-1.9uC*-1.9uC*1.7uC)}{(8.732cm)^{2}} \\PE=8.85x10^{9}\frac{N*m^{2} }{C^{2} }*\frac{1.9uC*1.9uC*1.7uC}{(0.08732m)^{2}} \\\\PE=8.85x10^{9}\frac{N*m^{2} }{C^{2} } *\frac{6.46uC^{2} }{7.624x10^{-3} m^{2}} \\\\PE=7.49N[/tex]
And finally the total energy is adding both so
ΔPE=7.49N+7.9N
ΔPE=15.39 N