Answer:
[tex]T=(m_1+m_2)g\mu_scos\theta[/tex]
Explanation:
Using the free body diagram of the load, we obtain according to Newton's laws:
[tex]\sum F_x:f_f-W_x=m_2a(1)\\\sum F_y:N-W_y=0(2)[/tex]
In this case we have:
[tex]W_x=m_2gsin\theta\\W_y=m_2gcos\theta[/tex]
We have to know the load maximum acceleration in order to calculate the maximum tension. So, we replace [tex]W_x[/tex] and [tex]W_y[/tex] in (1) and (2):
[tex]f_{max}-m_2gsin\theta=m_2a_{max}\\N=m_2gcos\theta\\f_{max}=\mu_s N\\\mu_sm_2gcos\theta-m_2gsin\theta=m_2a_{max}\\a_{max}=\mu_s gcos\theta-gsin\theta[/tex]
Now, we use the free body diagram of both bodies. Thus, we have:
[tex]T-W_x=(m_1+m_2)a_{max}\\T-(m_1+m_2)gsin\theta=(m_1+m_2)(\mu_s gcos\theta-gsin\theta)\\T=(m_1+m_2)\mu_s gcos\theta[/tex]