Respuesta :
Answer:
t=5.18 minute
Step-by-step explanation:
Using Newton's law of cooling
[tex]\frac{dT}{dt}=-k(T-T_{s})[/tex]
T is temperature of a cup of coffee at any time t [tex]T_{s}[/tex], is the temperature of the surrounding and k is a constant of proportionality in this negative because temperature is decreasing.
[tex]T(0)=190\\T(1)=170\\T_{s}=66[/tex]
[tex]\frac{dT}{dt}=-k(T-T_{s})\\\frac{dT}{(T-T_{s})}=-k*dt\\\int\limits {\frac{1}{T-T_{s} } } \, dT=-\int\limits {k} \, dt\\ln(T-T_{s})=k*t+C\\e*ln(T-T_{s})=e^{k*t+C} \\T-T_{s}=e^{k*t}*e^{C}\\e^{C}=C\\T-T_{s}=e^{k*t}*C\\T=T_{s}+e^{k*t}*C[/tex]
To find constant knowing the time and the temperature the first step of the change of energy in cup of coffee
[tex]T=T_{s} +e^{-k*t}*C\\ C=190-66=124\\170=66+124*e^{-k*2}\\ 170-66=124*e^{-k*2}\\ln(\frac{104}{124})=ln*e^{-k*2}\\-0.175=-k*2\\k=0.08794[/tex]
Now using the constant of decreasing can find the time to be a 145 temperature the cup of coffee
[tex]145=66+124*e^{-k*t} \\145-66=124*^{-0.087*t}[/tex]
[tex]ln(0.637)=ln*e(-0.087*t)\\-0.45=-0.087*t\\t=5.18minutes[/tex]
