Answer:
[tex]f(x)=4x^{3}-52x-48[/tex]
Step-by-step explanation:
we know that
The roots of the polynomial are values of x when the value of the polynomial is equal to zero
x=-3 ----> (x+3)=0
x=-1 ----> (x+1)=0
x=4 ----> (x-4)=0
so
The equation of the polynomial is
[tex]f(x)=a(x+3)(x+1)(x-4)[/tex]
Remember that
f(-2)=24
That means
For x=-2
f(x)=24
substitute the value of x and the value of y and solve for the coefficient a
[tex]24=a(-2+3)(-2+1)(-2-4)[/tex]
[tex]24=a(1)(-1)(-6)[/tex]
[tex]24=6a[/tex]
[tex]a=4[/tex]
substitute
[tex]f(x)=4(x+3)(x+1)(x-4)[/tex]
Applying distributive property
Convert to expanded form
[tex]f(x)=4(x+3)(x+1)(x-4)\\\\f(x)=4(x+3)(x^{2} -4x+x-4)\\\\f(x)=4(x+3)(x^{2}-3x-4)\\\\f(x)=4(x^{3}-3x^{2}-4x+3x^{2} -9x-12)\\\\f(x)=4(x^{3}-13x-12)\\\\f(x)=4x^{3}-52x-48[/tex]