Respuesta :
Answer:
The working of expressions is shown below.
Step-by-step explanation:
We are given the following information:
a) Expand
[tex]3(x+4)\\3\times x + 3\times 4\\3x + 12[/tex]
b) Expand and simplify
[tex]4(x+5)-2(x-3)\\=(4x + 20) -(2x-6)\\=( 4x-2x) + (20 + 6)\\= 2x + 26\\=2(x +13)[/tex]
c) Expand
[tex](x+2)(x+7)\\=x\times x + x\times 7 + 2\times x + 2\times 7\\= x^2 + 7x + 2x + 14\\=x^2 + 9x +14[/tex]
d) Factorize fully
[tex]12x-18\\=6(2x-3)[/tex]
Answer:
1) [tex]3(x+4)=3x+12[/tex]
2) [tex]4(x+5)-2(x-3)=2x+26[/tex]
3) [tex](x+2)(x+7)=x^2+9x+14[/tex]
4) [tex]12x-18=6(2x-3)[/tex]
Step-by-step explanation:
1) Expression : [tex]3(x+4)[/tex]
To find : Expand the expression ?
Solution :
[tex]3(x+4)[/tex]
Applying distributive property, [tex]a(b+c)=ab+ac[/tex]
[tex]3(x+4)=3x+12[/tex]
2) Expression : [tex]4(x+5)-2(x-3)[/tex]
To find : Expand and simplify the expression ?
Solution :
[tex]4(x+5)-2(x-3)[/tex]
Applying distributive property, [tex]a(b+c)=ab+ac[/tex]
[tex]4(x+5)-2(x-3)=4x+20-2x+6[/tex]
[tex]4(x+5)-2(x-3)=2x+26[/tex]
3) Expression : [tex](x+2)(x+7)[/tex]
To find : Expand the expression ?
Solution :
[tex](x+2)(x+7)[/tex]
Applying distributive property, [tex]a(b+c)=ab+ac[/tex]
[tex](x+2)(x+7)=x(x+7)+2(x+7)[/tex]
[tex](x+2)(x+7)=x^2+7x+2x+14[/tex]
[tex](x+2)(x+7)=x^2+9x+14[/tex]
4) Expression : [tex]12x-18[/tex]
To find : Factorize the expression ?
Solution :
[tex]12x-18[/tex]
Taking the common term,
[tex]12x-18=6(2x-3)[/tex]
