Answer:
x = 49.84
Step-by-step explanation:
We are given an equation of unknown x and we have to solve the equation for x.
[tex]2\ln(e\ln5x)-2\ln15 =0[/tex]
⇒ [tex]ln(e\ln5x) = \ln15[/tex]
⇒ [tex]\ln e + \ln \ln 5x = \ln 15[/tex] {Since we know that ln AB =ln A + ln B}
⇒ [tex]\ln \ln 5x = \ln 15 -\ln e[/tex]
⇒ [tex]\ln \ln 5x=\ln \frac{15}{e}[/tex] {Since we know that ln A/B = ln A - ln B}
⇒ [tex]\ln 5x = \frac{15}{e}[/tex]
⇒ [tex]5x = e^{\frac{15}{e} }[/tex]
⇒ [tex]x = \frac{1}{5} e^{\frac{15}{e} }[/tex]{Converting logarithm to exponent form}
⇒ x = 49.84 (Approximate) (Answer)