Respuesta :

frika

Answer:

4 and 16

Step-by-step explanation:

Let a and b be two unknown numbers.

1. The arithmetic mean of these numbers is

[tex]\dfrac{a+b}{2}=10[/tex]

2. The geometric mean of these numbers is

[tex]\sqrt{ab}=8[/tex]

Solve the system of two equations:

[tex]\left\{\begin{array}{l}\dfrac{a+b}{2}=10\\ \\\sqrt{ab}=8\end{array}\right.\Rightarrow \left\{\begin{array}{l}a+b=20\\ \\ab=64\end{array}\right.[/tex]

From the first equation

[tex]a=20-b[/tex]

Substitute it into the second equation

[tex](20-b)b=64\\ \\20b-b^2=64\\ \\-b^2+20b-64=0\\ \\b^2-20b+64=0\\ \\D=(-20)^2-4\cdot 64=400-256=144\\ \\b_{1,2}=\dfrac{-(-20)\pm \sqrt{144}}{2}=\dfrac{20\pm 12}{2}=16,\ 4[/tex]

When [tex]b=16,\ a=20-b=20-16=4[/tex]

When [tex]b=4,\ a=20-b=20-4=16[/tex]

ACCESS MORE
EDU ACCESS