Answer:
[tex]F_{x}[/tex] = -12 N , [tex]F_{y}[/tex] = -80 N and [tex]F_{z}[/tex] = - 44 N
Explanation:
The force is related to the potential energy by the formula
F = -Δ U = - ( [tex]\frac{dU}{dx}[/tex] i ^ + [tex]\frac{dU}{dy}[/tex] j ^ + [tex]\frac{dU}{dz}[/tex]k ^)
It indicates the potential energy
U = 2xyz + 3z² + 4yx + 16
To solve this problem let's make the derivatives, to find each component of the force
[tex]\frac{dU}{dx}[/tex] = 2yz + 0 + 4y + 0 = 2yz + 4y
[tex]\frac{dU}{dx}[/tex] = 2xz + 0 + 4x + 0 = 2xz + 4x
[tex]\frac{dU}{dx}[/tex] = 2xy + 3 2z + 0 +0 = 2xy + 6z
We look for the expression for the force in each axis
[tex]F_{x}[/tex] = - 2yz - 4y
[tex]F_{y}[/tex] = -2xz -4x
[tex]F_{z}[/tex] = -2xy -6z
We calculate at the point P = (20 i ^ + 1j ^ + 4 k ^) m
[tex]F_{x}[/tex] = - 2 1 4 - 4 1
[tex]F_{x}[/tex] = -12 N
[tex]F_{y}[/tex] = - 2 20 4 - 4 20
[tex]F_{y}[/tex] = -80 N
[tex]F_{z}[/tex]= - 20 1 - 6 4
[tex]F_{z}[/tex] = - 44 N
We put together the expression for strength
F = (-12 i ^ - 80j ^ -44k ^) N