Answer:
h = 1.014 x [tex]10^{8}[/tex] m
Explanation:
Given that,
The planet rotates once every 10.2 h
Therefore, in one hour it would take 1/10.2 rev/h
The rotational speed of the planet
= 0.098 rev/h
Converting into seconds
= 2.72 x [tex]10^{-5}[/tex] rev/s
Converting to radians, the rotational angular velocity is
ω = 1.709 x [tex]10^{-4}[/tex] rad/s
The mass of the planet, M = 2.2 x [tex]10^{27}[/tex] Kg
Radius of the planet, R = 6.99 x [tex]10^{7}[/tex] m
Gravitational constant, G = 6.67 x [tex]10^{-11}[/tex] Nm²/Kg²
To find the height 'h' of the synchronous orbit above the planet surface,
The orbital velocity of the planet is given by the expression
V = [tex]\sqrt{\frac{GM}{R + h} }[/tex]
Since
V = (R+h)ω
Substituting in the above equation
(R+h)ω = [tex]\sqrt{\frac{GM}{R + h} }[/tex]
Squaring on both sides
{(R+h)ω}² = [tex]{\frac{GM}{R + h} }[/tex]
(R+h)³ = [tex]{\frac{GM}{w^{2}}}[/tex]
Solving for h
h = [tex]\sqrt[3]{{\frac{GM}{w^{2}}}}[/tex] - R
Substituting the values in the above equation
h = [tex]\sqrt[3]{\frac{6.67X10^{-11}X2.2X10^{27} }{(1.709X10 ^{-4})^{2} }}[/tex] m
h = 1.014 x [tex]10^{8}[/tex] m
So, the height of the synchronous orbit above the surface is 1.014 x [tex]10^{8}[/tex] m