A "synchronous" satellite is put in orbit about a planet to always remain above the same point on the planet’s equator. The planet rotates once every 10.2 h, has a mass of 2.2 × 1027 kg and a radius of 6.99 × 107 m. Given: G = 6.67 × 10−11 N m2 /kg2 . Calculate how far above the planet’s surface the satellite must be

Respuesta :

Answer:

h = 1.014 x [tex]10^{8}[/tex] m

Explanation:

Given that,

The planet rotates once every 10.2 h

Therefore, in one hour it would take 1/10.2 rev/h

The rotational speed of the planet

                               = 0.098 rev/h

Converting into seconds

                                = 2.72 x [tex]10^{-5}[/tex] rev/s

Converting to radians, the rotational angular velocity is

                             ω  = 1.709 x [tex]10^{-4}[/tex] rad/s

The mass of the planet, M = 2.2  x [tex]10^{27}[/tex] Kg

Radius of the planet,      R  = 6.99 x [tex]10^{7}[/tex]  m

Gravitational constant,   G  = 6.67 x [tex]10^{-11}[/tex]  Nm²/Kg²

To find the height 'h' of the synchronous orbit above the planet surface,

The orbital velocity of the planet is given by the expression

                                      V  = [tex]\sqrt{\frac{GM}{R + h} }[/tex]

Since

                                       V  = (R+h)ω

Substituting in the above equation

                                (R+h)ω = [tex]\sqrt{\frac{GM}{R + h} }[/tex]

Squaring on both sides

                                {(R+h)ω}² = [tex]{\frac{GM}{R + h} }[/tex]

                                (R+h)³ =  [tex]{\frac{GM}{w^{2}}}[/tex]

Solving for h

                                    h  =  [tex]\sqrt[3]{{\frac{GM}{w^{2}}}}[/tex]  - R

Substituting the values in the above equation

                 h =  [tex]\sqrt[3]{\frac{6.67X10^{-11}X2.2X10^{27} }{(1.709X10 ^{-4})^{2} }}[/tex]  m

                                   h  = 1.014 x [tex]10^{8}[/tex] m

So, the height of the synchronous orbit above the surface is 1.014 x [tex]10^{8}[/tex] m

ACCESS MORE
EDU ACCESS