Respuesta :
Answer:
9.92 cm
Step-by-step explanation:
Given: ∆ABC,
CD ⊥ AB,
AC = BC,
Area of ABC = 32 cm2,
m∠A = 72°
Find: CD
Solution:
Triangle ABC is isosceles triangle with base AB, because AC = BC. In isosceles triangle angles adjacent to the base are congruent. So,
[tex]m\angle A=m\angle B=72^{\circ}[/tex]
The sum of the measures of all interior angles is 180°, thus
[tex]m\angle C=180^{\circ}-m\angle A-m\angle B\\ \\m\angle C=180^{\circ}-72^{\circ}-72^{\circ}=36^{\circ}[/tex]
The area of the triangle ABC is
[tex]A_{ABC}=\dfrac{1}{2}AC\cdot BC\cdot \sin \angle C\\ \\32=\dfrac{1}{2}AC^2\sin 36^{\circ}\\ \\AC^2=\dfrac{64}{\sin 36^{\circ}}\\ \\AC\approx 10.43\ cm[/tex]
Consider right triangle ACD. In this triangle,
[tex]\sin \angle A=\dfrac{CD}{AC}\\ \\\sin 72^{\circ}=\dfrac{CD}{10.43}\\ \\CD=10.43\sin 72^{\circ}\approx 9.92\ cm[/tex]
![Ver imagen frika](https://us-static.z-dn.net/files/d16/27114b2c6c2ac6e197ff2a0cdfc80c87.jpg)
Answer:
9.92 cm
Step-by-step explanation:
Using Trig functions, we can calculate the lengths.