Respuesta :
Answer:
The length of a side of the flag is 7.2inches
Step-by-step explanation:
Let length = x
Let hypotenuse = x+3
Using Pythagoras' Theorem:
x^2 + x^2 = (x+3)^2
x^2 + x^2 = x^2 + 6x + 9
2x^2 = x^2 + 6x + 9
×^2 - 6x - 9 = 0
[tex]x = \frac{ - b + - \sqrt{ {b}^{2} - 4ac } }{2a} [/tex]
x=[-(-6)+sqrt.(-6)^2-4(1)(-9)]/2(1)
×=[6+sqrt.72]/2
×=7.2inches
×=[-(-6)+sqrt.(-6)^2-4(1)(-9)]/2(1)
x=[6-sqrt.72]/2
×=-1.2(rej)
(PS. sqrt is square root)
(Correct me if i am wrong)
Answer:
7.2 in
Step-by-step explanation:
Let length of side of flag=x
Hypotenuse of right triangle=x+3
According to question information
[tex](x+3)^2=x^2+x^2[/tex]
Using Pythagoras theorem
[tex](hypotenuse)^2=(base)^2+(perpendicular\;side)^2[/tex]
[tex]x^2+6x+9=2x^2[/tex]
Using identity: [tex](x+y)^2=x^2+y^2+2xy[/tex]
[tex]2x^2-x^2-6x-9=0[/tex]
[tex]x^2-6x-9=0[/tex]
Using quadratic formula :[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]
[tex]x=\frac{6\pm\sqrt{(-6)^2-4(1)(-9)}}{2(1)}[/tex]
[tex]x=\frac{6\pm\sqrt{36+36}}{2}[/tex]
[tex]x=\frac{6\pm\sqrt{72}}{2}[/tex]
[tex]x=\frac{6\pm6\sqrt2}{2}[/tex]
[tex]x=\frac{6+6\sqrt2}{2}=3+3\sqrt2=7.2[/tex]
[tex]x=\frac{6-6\sqrt2}{2}=3-3\sqrt2[/tex]
[tex]x=-1.24[/tex]
It is not possible because the length of side is always positive.
Hence, the side of flag=7.2 in
![Ver imagen lublana](https://us-static.z-dn.net/files/d74/ec774592e3ade49830ba54ce9a610b40.png)