Respuesta :
Answer:
[tex]\large \boxed{34.2\, ^{\circ}\text{C}}[/tex]
Explanation:
There are two heat transfers involved: the heat lost by the metal block and the heat gained by the water.
According to the Law of Conservation of Energy, energy can neither be destroyed nor created, so the sum of these terms must be zero.
Let the metal be Component 1 and the water be Component 2.
Data:
For the metal:
[tex]m_{1} =\text{125 g; }T_{i} = 93.2 ^{\circ}\text{C; }\\C_{1} = 0.900 \text{ J$^{\circ}$C$^{-1}$g$^{-1}$}[/tex]
For the water:
[tex]m_{2} =\text{100 g; }T_{i} = 18.3 ^{\circ}\text{C; }\\C_{2} = 4.184 \text{ J$^{\circ}$C$^{-1}$g$^{-1}$}[/tex]
[tex]\begin{array}{rcl}\text{Heat lost by metal + heat gained by water} & = & 0\\q_{1} + q_{2} & = & 0\\m_{1}C_{1}\Delta T_{1} + m_{2}C_{2}\Delta T_{2} & = & 0\\\text{125 g}\times 0.900 \text{ J$^{\circ}$C$^{-1}$g$^{-1}$} \times\Delta T_{1} + \text{100 g} \times 4.184 \text{ J$^{\circ}$C$^{-1}$g$^{-1}$}\Delta \times T_{2} & = & 0\\112.5\Delta T_{1} + 418.4\Delta T_{2} & = & 0\\112.5\Delta T_{1} & = & -418.4\Delta T_{2}\\\Delta T_{1} & = & -3.719\Delta T_{2}\\\end{array}[/tex]
[tex]\Delta T_{1} = T_{\text{f}} - 93.2 ^{\circ}\text{C}\\\Delta T_{2} = T_{\text{f}} - 18.3 ^{\circ}\text{C}[/tex]
[tex]\begin{array}{rcl}\Delta T_{1} & = & -3.719\Delta T_{2}\\T_{\text{f}} - 93.2 ^{\circ}\text{C} & = & -3.719 (T_{\text{f}} - 18.3 ^{\circ}\text{C})\\T_{\text{f}} - 93.2 ^{\circ}\text{C} & = & -3.719T_{\text{f}} + 68.06 ^{\circ}\text{C}\\4.719T_{\text{f}} & = & 161.3 ^{\circ}\text{C}\\T_{\text{f}} & = & \mathbf{34.2 ^{\circ}}\textbf{C}\\\end{array}\\\text{The final temperature of the block and the water is $\large \boxed{\mathbf{34.2\, ^{\circ}}\textbf{C}}$}[/tex]