Respuesta :
Answer:
[tex]\displaystyle f'(x) = 2x + 1[/tex]
General Formulas and Concepts:
Algebra I
Terms/Coefficients
- Expanding/Factoring
Functions
- Function Notation
Calculus
Limits
Limit Rule [Variable Direct Substitution]: [tex]\displaystyle \lim_{x \to c} x = c[/tex]
Differentiation
- Derivatives
- Derivative Notation
- Definition of a Derivative: [tex]\displaystyle f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]f(x) = x^2 + x - 3[/tex]
Step 2: Differentiate
- Substitute in function [Definition of a Derivative]: [tex]\displaystyle f'(x) = \lim_{h \to 0} \frac{[(x + h)^2 + (x + h) - 3] - (x^2 + x - 3)}{h}[/tex]
- Expand: [tex]\displaystyle f'(x) = \lim_{h \to 0} \frac{x^2 + 2hx + h^2 + x + h - 3 - x^2 - x + 3}{h}[/tex]
- Combine like terms: [tex]\displaystyle f'(x) = \lim_{h \to 0} \frac{2hx + h^2 + h}{h}[/tex]
- Factor: [tex]\displaystyle f'(x) = \lim_{h \to 0} \frac{h(2x + h + 1)}{h}[/tex]
- Simplify: [tex]\displaystyle f'(x) = \lim_{h \to 0} 2x + h + 1[/tex]
- Evaluate [Limit Rule - Variable Direct Substitution]: [tex]\displaystyle f'(x) = 2x + 0 + 1[/tex]
- Simplify: [tex]\displaystyle f'(x) = 2x + 1[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation