Answer:
A. 0.5313
B. 0.15
Step-by-step explanation:
Given:
[tex]P(A)=0.55\\ \\P(B)=0.32\\ \\P(A\cup B)=0.70[/tex]
First , use formula
[tex]P(A\cup B)=P(A)+P(B)-P(A\cap B)[/tex]
to find [tex]P(A\cap B):[/tex]
[tex]0.70=0.55+0.32-P(A\cap B)\\ \\P(A\cap B)=0.55+0.32-0.70=0.87-0.70=0.17[/tex]
A. Use formula
[tex]P(A|B)=\dfrac{P(A\cap B)}{P(B)}\\ \\P(A|B)=\dfrac{0.17}{0.32}=\dfrac{17}{32}=0.53125\approx 0.5313[/tex]
B. Use formula
[tex]P(A'|B)=P(B)-P(A\cap B)=0.32-0.17=0.15[/tex]