Answer:
[tex]x = +2\sqrt{2}i , {\textrm{ or}} x= -2\sqrt{2}i[/tex]
Step-by-step explanation:
Here,the given expression is : [tex]5 + x^{2} = 2x^{2} + 13[/tex]
Now simplifying the expression, we get
[tex]5 + x^{2} = 2x^{2} + 13[/tex]
⇒ [tex]x^{2} - 2x^{2} = 13 - 5[/tex]
or, [tex]-x^{2} = 8[/tex]
⇒ [tex]x^{2} = -8 \\ or, x^{2} + 8 = 0[/tex]
Now, Since here the roots are NOT REAL but imaginary.
So, try and solve this by [tex]x = \frac{b \pm \sqrt{b^{2} - 4ac } }{2a}[/tex]
here, a = 1, b = 0 and c = 8
So, solving this, we get [tex]x = \frac{\pm \sqrt{-32} }{2} = \frac{\pm 4\sqrt{2} }{2}[/tex]
⇒ [tex]x = +2\sqrt{2}i , {\textrm{ or}} x= -2\sqrt{2}i[/tex]