Answer:
6.32N
Explanation:
According to Newton's second law:
[tex]\sum F=ma[/tex]
In this case the only force that acts on the object is the friction force, and the acceleration, is the centripetal acceleration since it is a circular movement, so we have:
[tex]F_f=ma_c(1)[/tex]
Centripetal aceleration is given by:
[tex]a_c=\frac{v^2}{r}(2)[/tex]
The speed is given by:
[tex]v=\omega r\\\omega=\frac{2\pi}{T}\\v=\frac{2\pi r}{T}[/tex]
Replacing [tex]v[/tex] in (2) and [tex]a_c[/tex] in (1):
[tex]F_f=m\frac{v^2}{r}\\F_f=m\frac{(\frac{2\pi r}{T})^2}{r}\\F_f=m\frac{4\pi^2 r}{T^2}\\F_f=2kg(\frac{4\pi^2(2m)}{(5s)^2)}\\F_f=6.32N[/tex]