Answer:
yes requirement will be met
Explanation:
considering temperature distribution through following relation
[tex]T(x,t) = T_1 + \frac{2q_o"\frac{(\alpha t)^0.5}{\pi}{k} exp (\frac{-x^2}{4\alpha t} - \frac{q_o" x}{k} erfc (\frac{x}{2\sqrt{\alpha t}}[/tex]
where [tex]\alpha =\frac{1.4}{2300\times 880} = 6.92\times 10^{-7} m^2/s[/tex]
[tex]t = 30\times 60 = 1800 sec[/tex]
Q = HEAT FLUX = 0.75 \times 10^4 W/m^2
[tex]T( 0, 30) = 25 + \frac{2(.75\times 10^4)[\frac{(6.92\times 10^{-7} \times 1800}{\pi}]^{0.5}}{1.4} exp (\frac{-0^2}{4(6.92\times 10^{-7} \times 1800)} - \frac{(0.7\times 10^{4} 0}{k} erfc(0)[/tex]
T(0,30 min) = 25 + 213.34 = 238.34 degree C
CALCULATE THE TEMPERATURE AT X = 0.25 M
[tex]T(0.25, 30) = 25 + 213.34 [exp (\frac{0.25^2}{4\times 6.92\times 10^{-7} \times 1800})] - \frac{0.75\times 10^4(0.25)}{1.4} erfc(\frac{0.25}{2\sqrt{6.92\times 10^{-7} \times 1800}})[/tex]
[tex]T(0.25,30 min) = 25 + 213.34(3.56\times 10^{-4}) - 1339.28 (.00000054765)[/tex]
T(0.25,30 min) = = 25.00 degree celcius
since both surface have temperature lower than allowable therefore code requirement be met