Answer:
(A) Speed will be [tex]44.18\times 10^4m/sec[/tex]
(b) Change in kinetic energy = [tex]1560\times 10^{-19}[/tex]
Explanation:
We have given mass of proton [tex]m=1.67\times 10^{-27}kg[/tex]
Acceleration of the proton [tex]a=2.50\times 10^{12}m/sec^2[/tex]
Initial velocity u = [tex]1.60\times 10^4[/tex] m/sec
Distance traveled by proton s = 3.90 cm = 0.039 m
(a) From third equation of motion we know that
[tex]v^2=u^2+2as[/tex]
[tex]v^2=(1.60\times 10^4)^2+2\times 2.5\times 10^{12}\times 0.039[/tex]
[tex]v=44.18\times 10^4m/sec[/tex]
(b) Initial kinetic energy [tex]KE_I=\frac{1}{2}mv^2=\frac{1}{2}\times 1.67\times 10^{-27}\times (1.6\times 10^4)^2[/tex]
Final kinetic energy [tex]KE_F=\frac{1}{2}mv^2=\frac{1}{2}\times 1.67\times 10^{-27}\times (44.18\times 10^4)^2[/tex]
So change in kinetic energy [tex]\Delta KE=KE_F-KE_I=\frac{1}{2}\times 1.6\times 10^{-27}\times 10^8\times (44.18^2-1.6^2)=1560\times 10^{-19}J[/tex]