A proton (mass m = 1.67 × 10-27 kg) is being accelerated along a straight line at 2.50 × 1012 m/s2 in a machine. If the proton has an initial speed of 1.60 × 104 m/s and travels 3.90 cm, what then is (a) its speed
(b) the increase in its kinetic energy?

Respuesta :

Answer:

(A) Speed will be [tex]44.18\times 10^4m/sec[/tex]

(b) Change in kinetic energy = [tex]1560\times 10^{-19}[/tex]      

Explanation:

We have given mass of proton [tex]m=1.67\times 10^{-27}kg[/tex]

Acceleration of the proton [tex]a=2.50\times 10^{12}m/sec^2[/tex]

Initial velocity u = [tex]1.60\times 10^4[/tex] m/sec

Distance traveled by proton s = 3.90 cm = 0.039 m

(a) From third equation of motion we know that

[tex]v^2=u^2+2as[/tex]

[tex]v^2=(1.60\times 10^4)^2+2\times 2.5\times 10^{12}\times 0.039[/tex]

[tex]v=44.18\times 10^4m/sec[/tex]

(b) Initial kinetic energy [tex]KE_I=\frac{1}{2}mv^2=\frac{1}{2}\times 1.67\times 10^{-27}\times (1.6\times 10^4)^2[/tex]

Final kinetic energy [tex]KE_F=\frac{1}{2}mv^2=\frac{1}{2}\times 1.67\times 10^{-27}\times (44.18\times 10^4)^2[/tex]

So change in kinetic energy [tex]\Delta KE=KE_F-KE_I=\frac{1}{2}\times 1.6\times 10^{-27}\times 10^8\times (44.18^2-1.6^2)=1560\times 10^{-19}J[/tex]