Answer:
Error sum of squares SSE = 15
Step-by-step explanation:
Given:
C = N + D
Var C = Var N + Var D + 2 Cov(N,D)
= 2(1+ Cov(N,D))
from 2 simple regreesion
[tex]\frac{Cov(c,y)}{Var(y)} = Cov(c,y) = 0.8[/tex] however
Cov(c,y) = Cov(N + D, y) = Cov(N,y) + Cov(D,y)
AND
Cov(C,N) =Cov(N + D, N) = Var N + Cov(D,N) = 0.5
Cov(D,N) = -0.5
therefore
Var(C) = 2(1-0.5) = 1
ALSO
Cov(C,D) = Cov( N+D,D)
= Cov( N,D) + Var(D)
= -0.5 + 1 = 0.5
Slope of C on D = [tex]\frac{Cov(C,D)}{Var(D)}[/tex]= 0.5
finaly we have
Error sum of square (SSE) = SST -SSR
= (n-1) Sc^2 - slope^2(n-1) Sd^2
=20(1)^2 - 0.5^2(20)(1)
SSE = 15