If the percent yield for the following reaction is 80.37%, and 63.21 g of NO2 are used in the reaction mixture, how many grams of nitric acid, HNO3(aq), are produced in the experiment? 3 NO2(g) + H2O(l) → 2 HNO3(aq) + NO(g) Molar mass NO2 = 46.01 g/mol and HNO3 = 63.01 g/mol.

Respuesta :

Explanation:

It is given that mass of [tex]NO_{2}[/tex] is 46.01 g/mol and mass of [tex]HNO_{3}[/tex] is 63.01 g/mol.

So, in 1 mole calculate the number of moles present in 63.21 g/mol of [tex]NO_{2}[/tex] as follows.

                 No. of moles = [tex]\frac{mass}{\text{molar mass}}[/tex]

                                       = [tex]\frac{63.21 g}{46.01 g/mol}[/tex]

                                       = 1.37 mol

Now, according to the reaction equation we require 3 moles of [tex]NO_{2}[/tex] to make 2 moles of [tex]HNO_{3}[/tex].

        [tex]1.37 mol NO_{3} \times \frac{\text{2 moles} HNO_{3}}{\text{3 moles} NO_{2}}[/tex]

                          = 0.91 mol

Hence, calculate the mass of [tex]HNO_{3}[/tex] as follows.

                  No. of moles = [tex]\frac{mass}{\text{molar mass}}[/tex]

                           0.91 mol = [tex]\frac{mass}{63 g/mol}[/tex]

                          mass = 57.33 g

Now, mass of [tex]HNO_{3}[/tex] actually produced by 80.37% yield is calculated as follows.

                     [tex]0.8037 \times 57.33 g[/tex]

                       = 46.07 g

Thus, we can conclude that 46.07 g of nitric acid, [tex]HNO_{3}(aq)[/tex], are produced in the experiment.