Answer:
Explanation:
Given
radius of satellite orbit [tex]r_1=7.49\times 10^6 m[/tex]
And orbital velocity is given by
[tex]v=\sqrt{\frac{GM}{r}}[/tex]
where M=mass of earth [tex]=5.98 \times 10^{24} kg[/tex]
[tex]G=6.67\times 10^{-11}[/tex]
[tex]v=\sqrt{\frac{6.67\times 10^{-11}\times 5.98\times 10^{24}}{7.49\times 10^6}[/tex]
[tex]v=7.29 \times 10^3 m/s[/tex]
centripetal acceleration is given
[tex]a_c=\frac{v^2}{r}[/tex]
[tex]a_c=\frac{(7.29\times 10^3)^2}{7.49\times 10^6}[/tex]
[tex]a_c=7.095 m/s^2[/tex]
For Model airplane
[tex]a_c=\frac{v^2}{r}[/tex]
[tex]7.095=\frac{v^2}{24.1}[/tex]
[tex]v=\sqrt{170.98}=13.07 m/s[/tex]