Answer:
They differ in a 5.86%
Explanation:
Hi, the Van der Waals equation for gases is:
[tex](P+ \frac{a}{v^2})(v-b)=R*T[/tex]
For methane gas:
[tex]a= 2.253 \frac{L^2atm}{mol^2}[/tex]
[tex]b= 4.278*10^{-2} \frac{L}{mol}[/tex]
The conditions give{n are T=271.3 K, n=1.052mol and V=1.031L
The molar volume:
[tex]v= \frac{V}{n}[/tex]
[tex]v= \frac{1.031L}{1.052mol}[/tex]
[tex]v= 0.98 \frac{L}{mol}[/tex]
Replacing in Van der Waals :
[tex](P+ \frac{2.253 \frac{L^2atm}{mol^2}}{ 0.98 \frac{L}{mol}^2})( 0.98 \frac{L}{mol}-4.278×10^-2 \frac{L}{mol})=0.082 \frac{L*atm}{mol*K}*271.3K[/tex]
[tex]P=21.39 atm[/tex]
In percentaje:
[tex]\frac{P_{VdW}}{P{ideal}}*100=\frac{21.39 atm}{22.72atm}*100[/tex]
[tex]\frac{P_{VdW}}{P{ideal}}*100=94.14[/tex]
They differ in a 5.86%