Explanation:
We calculate the amount of carbon fixed as follows.
[tex]455 \times 10^{3} kg/km^{2} \times 4.46 \times 10^{7} km^{2}[/tex]
= [tex]2029.3 \times 10^{10}[/tex] kg
[tex]\Delta H_{f}_{C_{6}H_{12}O_{6}}[/tex] = -1273.1 kJ/mol
[tex]\Delta H_{f}_{CO_{2}}[/tex] = -393.5 kJ/mol
[tex]\Delta H_{f}_{H_{2}O}[/tex] = -285.8 kJ/mol
Hence, total [tex]\Delta H[/tex] reaction will be as follows.
[tex]\Delta H_{rxn} = (\Delta H_{f}_{C_{6}H_{12}O_{6}}) - 6(\Delta H_{f}_{CO_{2}}) - 6(\Delta H_{f}_{H_{2}O})[/tex]
= [tex]-1273.1 kJ/mol - (6 \times 393.5 kJ/mol) - (6 \times 285.8 kJ/mol)[/tex]
= 2802.7 kJ/mol
Therefore, calculate the number of moles of fixed carbon as follows.
[tex]n_{c, fixed} = \frac{m_{c, fixed}}{\text{Molar mass of C in kg/mol}}[/tex]
= [tex]\frac{4.55 \times 10^{5}kg km^{-2} year^{-1}}{12.01 \times 10^{-3} kg/mol}[/tex]
= [tex]3.786 \times 10^{7} mol km^{-2} year^{-1}[/tex]
Thus, we can conclude that the annual enthalpy change resulting from the photosynthetic carbon fixation over the land surface is [tex]3.786 \times 10^{7} mol km^{-2} year^{-1}[/tex].