The total surface area for the Asia consisting of forest, cultivated land, grass land, and desert is approximately 4.46 x 107 km2. Every year, the mass of carbon fixed by photosynthesis by vegetation covering this land surface according to reaction 6 CO2(g) + 6H2O (l)  C6H12O6(s) + 6O2(g) is about 455 x 103 kg km-2. Calculate the annual enthalpy change resulting from the photosynthetic carbon fixation over the land surface. Assume 1 bar and 298 K.

Respuesta :

Explanation:

We calculate the amount of carbon fixed as follows.

          [tex]455 \times 10^{3} kg/km^{2} \times 4.46 \times 10^{7} km^{2}[/tex]

            = [tex]2029.3 \times 10^{10}[/tex] kg

[tex]\Delta H_{f}_{C_{6}H_{12}O_{6}}[/tex] = -1273.1 kJ/mol

[tex]\Delta H_{f}_{CO_{2}}[/tex] = -393.5 kJ/mol

[tex]\Delta H_{f}_{H_{2}O}[/tex] = -285.8 kJ/mol

Hence, total [tex]\Delta H[/tex] reaction will be as follows.

             [tex]\Delta H_{rxn} = (\Delta H_{f}_{C_{6}H_{12}O_{6}}) - 6(\Delta H_{f}_{CO_{2}}) - 6(\Delta H_{f}_{H_{2}O})[/tex]

                           = [tex]-1273.1 kJ/mol - (6 \times 393.5 kJ/mol) - (6 \times 285.8 kJ/mol)[/tex]

                           = 2802.7 kJ/mol

Therefore, calculate the number of moles of fixed carbon as follows.

           [tex]n_{c, fixed} = \frac{m_{c, fixed}}{\text{Molar mass of C in kg/mol}}[/tex]

                   = [tex]\frac{4.55 \times 10^{5}kg km^{-2} year^{-1}}{12.01 \times 10^{-3} kg/mol}[/tex]

                   = [tex]3.786 \times 10^{7} mol km^{-2} year^{-1}[/tex]

Thus, we can conclude that the annual enthalpy change resulting from the photosynthetic carbon fixation over the land surface is [tex]3.786 \times 10^{7} mol km^{-2} year^{-1}[/tex].

ACCESS MORE