Answer:
It will extend the loan for 15.83 months = 16 more months.
Explanation:
We need to calcualte the difference in time between one option and another:
Original Loan:
[tex]C \times \frac{1-(1+r)^{-time} }{rate} = PV\\[/tex]
C $310.00
time n
rate 0.0064583 (0.0775annual rate / 12 month per year)
PV $9,800
[tex]310 \times \frac{1-(1+0.0064583)^{-n} }{0.0064583} = 9800\\[/tex]
We rearrenge and solve as much as we can:
[tex](1+0.0064583)^{-n}= 1-\frac{9800\times0.0064583}{310}[/tex]
[tex](1+0.0064583)^{-n} = 0.79583439[/tex]
Now, we solve using logarithmics properties:
[tex]-n= \frac{log0.795834387096774}{log(1+0.0064583)}[/tex]
35.47385568
Now we calcualte with the new terms:
C $225.00
[tex]225 \times \frac{1-(1+0.0064583)^{-n} }{0.0064583} = 9800\\[/tex]
[tex](1+0.0064583)^{-n}= 1-\frac{9800\times0.0064583}{225}[/tex]
[tex](1+0.0064583)^{-n}= 0.71870516[/tex]
[tex]-n= \frac{log0.718705155555555}{log(1+0.0064583)}[/tex]
51.30909653
Last step, we solve for the difference:
51.30 - 35.47 = 15.83 = 16 more months