Answer:
Explanation:
m = 2 Kg
α = 30º
μ = 0.2
F = ?
We can apply
∑ Fx' = 0 (as v is constant, a = 0)
then
F - Ff - Wx' = 0 ⇒ F = Ff + Wx'
We get the force of friction as follows
Ff = μ * N = μ * Wy' = μ * (W * Cosα) = μ * m * g * Cosα
⇒ Ff = 0.2 * 2 Kg * 9.81 m/s² * Cos30º = 3.3983 N
then we get the x'-component of W
Wx' = W * Sin α = m * g * Sin α
⇒ Wx' = 2 Kg * 9.81 m/s² * Sin30º = 9.81 N
finally we obtain
F = Ff + Wx' = 3.3983 N + 9.81 N = 13.2083 N