Answer: (0.994, 0.998)
Step-by-step explanation:
Given : Sample size : n= 25 < 30 , so we use t-test.
[tex]\overline{x}=0.996\ \ ;\ s=0.004[/tex]
Critical t-value use for 98% confidence :
[tex]t_{n-1,\alpha/2}=t_{24,0.01}=2.492[/tex]
Formula to find the confidence interval :-
[tex]\overline{x}\pm t_{\alpha/2}(\dfrac{\sigma}{\sqrt{n}})[/tex]
i.e. [tex]0.996\pm (2.492)(\dfrac{0.004}{\sqrt{25}})[/tex]
[tex]=0.996\pm 0.0019936\approx0.996\pm0.002\\\\=(0.996-0.002,\ 0.996+0.002)\\\\=(0.994,\ 0.998)[/tex]
Hence, the required confidence interval : (0.994, 0.998)