In the Bohr model of the hydrogen atom, an electron moves in a circular path around a proton. The speed of the electron is approximately 2.20 x 10^6 m/s. Find (a) the force acting on the electron as it revolves in a circular orbit of radius 0.530 x 10^-10 m and (b) the centripetal acceleration of the electron.


a) Fc = m*v^2/ r
Fc = 9.10938188*10^-31 * (2.2*10^6)^2 / (0.53*10^-10)
Fc = 8.3188 *10^-8 N

b) ac = Fc / m =
8.31876*10^-8 / (9.10938188*10^-31) = 9.1321*10^22 m/s^2

Respuesta :

Explanation:

It is given that,

Radius of the circular orbit, [tex]r=0.53\times 10^{-10}\ m[/tex]  

Speed of the electron, [tex]v=2.2\times 10^6\ m/s[/tex]

Mass of the electron, [tex]m=9.1\times 10^{-31}\ kg[/tex]

(a) The force acting on the electron is centripetal force. Its formula is given by :

[tex]F=\dfrac{mv^2}{r}[/tex]

[tex]F=\dfrac{9.1\times 10^{-31}\times (2.2\times 10^6)^2}{0.53\times 10^{-10}}[/tex]  

[tex]F=8.31\times 10^{-8}\ N[/tex]

(b) The centripetal acceleration of the electron is given by :

[tex]a=\dfrac{v^2}{r}[/tex]

[tex]a=\dfrac{(2.2\times 10^6)^2}{0.53\times 10^{-10}}[/tex]

[tex]a=9.13\times 10^{22}\ m/s^2[/tex]

Hence, this is the required solution.