Answer:
v = [tex]\left[\begin{array}{c}0.66&0\end{array}\right][/tex]m/s
Explanation:
The position vector r of the bug with linear velocity v and angular velocity ω in the laboratory frame is given by:
[tex]\overrightarrow{r}=vtcos(\omega t)\hat{x}+vtsin(\omega t)\hat{y}[/tex]
The velocity vector v is the first derivative of the position vector r with respect to time:
[tex]\overrightarrow{v}=[vcos(\omega t)-\omega vtsin(\omega t)]\hat{x}+[vsin(\omega t)+\omega vtcos(\omega t)]\hat{y}[/tex]
The given values are:
[tex]t=\frac{x}{v}=\frac{14}{3.8}=3.7 s[/tex]
[tex]\omega=\frac{45\times2\pi}{60s}=4.7\frac{1}{s}[/tex]