Answer:
[tex]T = 40 + e^{3.68t} e^{2.99}[/tex]
Explanation:
The differential equation for given is given as
[tex]\frac{dT}{dt} = - k(T-T_s)[/tex]
integrating above equation we have
ln(T-T_s) = -kt + C
At t = 0 , T(0) = 60
[tex]ln(60- 40) = -k\times 0 + C[/tex]
2.99 = C
At t =1 , T(1) = 40.49887
[tex]ln(40.49787 - 40) = -k\times 1 + 2.99[/tex]
- k = -3.687
So we have
[tex]T- 40 = e^{3.68t + 2.99}[/tex]
[tex]T = 40 + e^{3.68t} e^{2.99}[/tex]