Answer: 48 m
Explanation:
Since we are dealing with constant acceleration, we can use the following equations:
[tex]V=V_{o}+a.t[/tex] (1)
[tex]V^{2}={V_{o}}^{2}+2ad[/tex] (2)
Where:
[tex]V[/tex] is the cart’s final velocity
[tex]V_{o}=2 m/s[/tex] is the cart’s initial velocity
[tex]a=2 m/s^{2}[/tex] is the cart's acceleration
[tex]t=6 s[/tex] is the time
[tex]d[/tex] is the cart's displacement
So, firstly we have to find [tex]V[/tex] from (1):
[tex]V=2 m/s+(2 m/s^{2})(6 s)[/tex] (3)
[tex]V=14 m/s[/tex] (4)
Isolating [tex]d[/tex] from (2) and substituting (4):
[tex]d=\frac{V^{2}-V_{o}}^{2}}{2a}[/tex] (5)
[tex]d=\frac{(14 m/s)^{2}-(2 m/s)}^{2}}{2(2 m/s^{2})}[/tex] (6)
Finally:
[tex]d=48 m[/tex]