Answer:
0.51 cm
Step-by-step explanation:
In right triangle MNP, MP = 4 cm, m∠N = 90°, m∠P = 21°
By the sine definition,
[tex]\sin \angle P=\dfrac{\text{Opposite leg}}{\text{Hypotenuse}}=\dfrac{MN}{MP}\\ \\MN=MP\sin \angle P\\ \\MN=4\sin 21^{\circ}\approx 1.43\ cm[/tex]
Now, consider right triangle HMN (it is right because NH is an altitude). By the cosine definition,
[tex]\cos \angle M=\dfrac{\text{Adjacent leg}}{\text{Hypotenuse}}=\dfrac{MH}{MN}\\ \\MH=MN\cos \angle M[/tex]
In the right triangle, two acute angles are always complementary, so
[tex]m\angle M=90^{\circ}-m\angle P=90^{\circ}-21^{\circ}=69^{\circ}[/tex]
Thus,
[tex]MH=1.43\cos 69^{\circ}\approx 0.51\ cm[/tex]