Respuesta :

Answer:

-7/25

Step-by-step explanation:

[tex]\theta[/tex] is in quadrant two given that [tex]\theta[/tex] is between 90 degrees and 180 degrees.

This means cosine value there is negative and sine value is positive.

Let's use the Pythagorean Identity: [tex]\sin^2(\theta)+\cos^2(\theta)=1[/tex].

[tex](\frac{24}{25})^2+\cos^2(\theta)=1[/tex]

[tex]\frac{576}{625}+\cos^2(\theta)=1[/tex]

Subtract 576/625 on both sides:

[tex]\cos^2(\theta)=1-\frac{576}{625}[/tex]

[tex]\cos^2(\theta)=\frac{625-576}{625}[/tex]

[tex]\cos^2(\theta)=\frac{49}{625}[/tex]

Take the square root of both sides:

[tex]\cos(\theta)=\pm \frac{7}{25}[/tex]

So recall that the cosine value here is negative due to the quadrant we are in.

[tex]\cos(\theta)=-\frac{7}{25}[/tex]

Check:

[tex](\frac{24}{25})^2+(-\frac{7}{25})^2[/tex]

[tex]\frac{576+49}{625}[/tex]

[tex]\frac{625}{625}[/tex]

[tex]1[/tex]

So we got the desired result since the right hand side of our Pythagorean Identity is 1.

ACCESS MORE