Answer:
-7/25
Step-by-step explanation:
[tex]\theta[/tex] is in quadrant two given that [tex]\theta[/tex] is between 90 degrees and 180 degrees.
This means cosine value there is negative and sine value is positive.
Let's use the Pythagorean Identity: [tex]\sin^2(\theta)+\cos^2(\theta)=1[/tex].
[tex](\frac{24}{25})^2+\cos^2(\theta)=1[/tex]
[tex]\frac{576}{625}+\cos^2(\theta)=1[/tex]
Subtract 576/625 on both sides:
[tex]\cos^2(\theta)=1-\frac{576}{625}[/tex]
[tex]\cos^2(\theta)=\frac{625-576}{625}[/tex]
[tex]\cos^2(\theta)=\frac{49}{625}[/tex]
Take the square root of both sides:
[tex]\cos(\theta)=\pm \frac{7}{25}[/tex]
So recall that the cosine value here is negative due to the quadrant we are in.
[tex]\cos(\theta)=-\frac{7}{25}[/tex]
Check:
[tex](\frac{24}{25})^2+(-\frac{7}{25})^2[/tex]
[tex]\frac{576+49}{625}[/tex]
[tex]\frac{625}{625}[/tex]
[tex]1[/tex]
So we got the desired result since the right hand side of our Pythagorean Identity is 1.