Answer:
pH of the solution = 9.45
Explanation:
pKb = 8.57
pKb = -logKb
Kb = antilog pkb
[tex]K_b = 1.78 \times 10^{-9}[/tex]
ICE table for the ionization of pyrodine is:
[tex]C_5H_5N+H_2O \leftrightharpoons C_5H_5NH^+ + OH^-[/tex]
initial 0.435 0 0
equi. 0.435 - x x x
so,
[tex]k_b =\frac{ [C_5H_5NH^+][OH^-]}{[C_5H_5N]}\\1.78\times 10^{-9}=\frac{x^2}{0.453 - x}[/tex]
As kb is very less that means there is very less ionization, hence x can be ignored as compared to 0.435
[tex]x^2 = 1.78\times 10{-9} \times 0.435\\x= 2.78\times 10^{-5}[/tex]
pOH = -log[OH-]
[tex]pOH = -log[2.78\times 10^{-5}]\\=4.55[/tex]
pH = 14 - pOH
= 14 - 4.55
= 9.45