Respuesta :
Answer:
The correct answer is (D) [tex]0.44=\frac{x-78}{8.6}[/tex]
Step-by-step explanation:
If we check the value in the Normal Distribution table, the x score that falls above 33% is given by:
P(z>x)=0.33
1 - P(z≤x)=0.33
1 - 0.33=P(z≤x)
0.67=P(z≤x)⇒ z=0.44
Also
z=(x-μ)/σ
where:
μ: mean of the distribution
σ: standard deviation of the distribution
Hence,
0.44=(x-78)/8.6
The correct option is D).
Step-by-step explanation:
Given :
Mean, [tex]\mu = 78[/tex]
Standard Deviation, [tex]\sigma = 8.6[/tex]
Solution :
In the Normal Distribution table, the z score that falls above 33% is
[tex]\rm P(z>x)=0.33[/tex]
[tex]\rm 1-P(z\leq x) = 0.33[/tex]
[tex]\rm P(z\leq x) = 1-0.33=0.67[/tex]
z = 0.44
We know that z score is given by
[tex]z = \dfrac{x-\mu}{\sigma}[/tex]
[tex]0.44=\dfrac{x-78}{8.6}[/tex]
The correct option is D).
For more information, refer the link given below
https://brainly.com/question/9793303?referrer=searchResults