Respuesta :
Answer:
Probability that fewer than three of them will have type O negative blood: P(x<3)=0.6047
Probability that more than 4 of them have type O negative blood: P(x>4)=0.0472
Probability that none of the donors had type O negative blood: P(x=0)=0.2342
Mean of the number of donors who have type O negative blood for a group this size: E=1
Standard deviation of the number of donors who have type O negative blood for a group this size: SD=2
Step-by-step explanation:
These experiments behave as binomial distribution:
P(x)=[tex]\frac{n!}{x!(n-x)!}. p^x.(1-p)^{n-x}[/tex]
where:
x: donors have type O negative blood
p: success outcome (0.07)
n: unrelated donors (20)
Fewer than three donors will have type O negative blood:
P(x<3)=P(x=0)+P(x=1)+P(x=2)=[tex]\frac{20!}{0!(20-0)!}. (0.07)^0.(1-0.07)^{20-0}[/tex]+[tex]\frac{20!}{1!(20-1)!}. (0.07)^1.(1-0.07)^{20-1}[/tex]+[tex]\frac{20!}{2!(20-2)!}. (0.07)^2.(1-0.07)^{20-2}}[/tex]
P(x<3)=0.2342+0.3526+0.2521=0.8389
More than 4 of donors have type O negative blood:
P(x>4)=1-P(x<4)= 1 - P(x=0) - P(x=1) - P(x=2) - P(x=3)= 1 - 0.2342 - 0.3526 - 0.2521 - 0.1139=0.0472
None of the donors had type O negative blood:
P(x=0)=[tex]\frac{20!}{0!(20-0)!}. (0.07)^0.(1-0.07)^{20-0}[/tex]=0.2342
Mean of the number of donors who have type O negative blood:
E=n×p=20×0.07=1.4≅1
The mean number of donors that have type O negative blood is 1.
Standard deviation of the number of donors who have type O negative blood:
SD=[tex]\sqrt{npq}[/tex]=[tex]\sqrt{20*0.07*0.93}[/tex]=1.5≅2
The standard deviation of the distribution of donors that have type O negative blood is 2.