Answer:
1.25 mm
Explanation:
Given:
Temperature = 1050°C = 1050 + 273 = 1323 K
concentration of A = 4.0 wt%
preexponential value for the diffusion, D₀ = 2.4 × 10⁻⁴ m²/s
activation energy value for the diffusion, [tex]Q_d[/tex]= 154 kJ/mol = 154 × 10³ J/mol
Diffusion coefficient at 1050°C , D₁₀₅₀ = [tex]D_0\exp\frac{-Q_d}{RT}[/tex]
here,
R is the ideal gas constant = 8.314 J/mol·K.
T is the temperature
Thus
D₁₀₅₀ = [tex]2.4\times10^{-4}\exp\frac{-154\times10^3}{8.314\times1323}[/tex]
or
D₁₀₅₀ = 1.98 × 10⁻¹⁰
and,
Diffusion coefficient at 711°C , D₇₁₁ = [tex]D_0\exp\frac{-Q_d}{RT}[/tex]
D₇₁₁ = [tex]2.4\times10^{-4}\exp\frac{-154\times10^3}{8.314\times(711+273)}[/tex]
or
D₇₁₁ = 1.58 × 10⁻¹²
also,
[tex]\frac{\textup{x}^2}{\textup{D}}[/tex] = constant
here, x is the position
thus,
[tex]\frac{x_{1050}^2}{x_{711}^2} = \frac{D_{1050}}{D_{711}}[/tex]
or
[tex]\frac{14^2}{x_{711}^2} = \frac{1.98\times10^{-10}}{1.58\times10^{-12}}[/tex]
or
x₇₁₁ = 1.25 mm