Answer:
a) P = 2 bar, W = 12 kJ
B)P = 0.8 bar, W = 7.33 kJ
C) P = 0.55 bar, W = 6.14 kJ
Explanation:
[tex]pV^n = constant. [/tex]
The initial volume [tex]V_1 = 0.1 m3, [/tex]
The final volume [tex]V_2 = 0.04 m3[/tex],
The initial pressure [tex]P_1 = 2 bar.
[/tex]
We know that
[tex]P_1 V_1^n = P_2 V_2^n,[/tex]
[tex]P_2 = P_1\frac{(V_1}{V_2)^n}[/tex]
[tex]= 2\frac{(0.04}{0.1)^n}[/tex]
`a) n = 0, [tex]P_2 = 2\frac{(0.04}{0.1)^0} = 2 bar[/tex]
[tex]W = P_2(V_2 - V_1) = 2*100 kPa * (0.06 m3) = 12 kJ[/tex]
b) n = 1, [tex]P_2 = 2\frac{(0.04}{0.1)^1} = 0.8 bar[/tex]
[tex]W = P_2 V_2 ln\frac{(V2}{V1} = 7.33 kJ[/tex]
c) n = 1.4, [tex]P_2 = 2\frac{(0.04}{0.1)^1.3} = 0.5542 bar[/tex]
[tex]W = \frac{(P_2 V_2 - P_1 V_1)}{(1 - n)} = 6.14 kJ[/tex]