Answer:
Diffusion time needed for 610 degree celcius is 81.91 min
Explanation:
Given data:
Diffusion heat temperature = 826 + 273 = 1099 K
Diffusion time t_1 = 10 min
carbon concentration = 0.83%
[tex]D_O = 8.3\times 10^{-8} m^2/s[/tex]
[tex]Q_d = 78.5 kJ/kg[/tex]
[tex]T_2 = 610+273 = 883 K[/tex]
From Fick's formula we hvae
[tex]\frac{ C_x - C_o}{C_z -C_o} = 1 -erf(\frac{x}{2\sqrt{Dt}}[/tex]
at specific concentration
[tex]\frac{ C_x - C_o}{C_z -C_o} = constant[/tex]
then
[tex](\frac{x}{2\sqrt{Dt}} = constant[/tex]
[tex](\frac{x^2}{{Dt}} = constant[/tex]
Dt = constant
[tex]D_1 t_1 = D_2 t_2[/tex]
[tex]t_2 = \frac{D_1 t_1}{D_2}[/tex]
[tex] D_1 at T_1[/tex]
[tex]D_1 = D_o exp(\frac{Q_d}{R t_1})[/tex]
[tex]= 8.3\times 10^{-8} exp(\frac{78.5\times 10^3}{8.314 \times 1099})[/tex]
[tex]= 1.54\times 10^{-11} m^2/s[/tex]
similarly for D_2 for T_2
[tex]D_2 = 1.88\times 10^{-12} m^2/s[/tex]
[tex]t_2 = \frac{D_1 t_1}{D_2}[/tex]
[tex]= \frac{1.54\times 10^{-11} \times 10}{1.88\times 10^{-11}}[/tex]
[tex]t_2 = 81.91 min[/tex]
Diffusion time needed for 610 degree celcius is 81.91 min